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1. Introduction

In many real situations, observations are available only in certain
groups. This process of recording or storing observations in groups directly
leads to grouped data., Experimental cobservations where precise measuring
instruments are not avallable also result in grouped data, Various authors
have provided examples of diverse fields where statistical analysis has to
depend on grouped data, for reference, see Indrayan and Ruatagi (1979). 1In
that paper, the case of spproximate maximum likelihood estimates was discussed
for regression models. In this paper, we provide techniques for testing hypo-
theses about parameters in the regression model under the situation of grouped
data. We consider a test statistic which is similar to the conventional F
statistic for the ungrouped case. A simulation study, performed for a few
cases, shows that the proposed statistic has an approximate F-distribution.

The spproximation here is to the order 0(h /oh) where h is the length
of the interval of recorded observations and ¢ is the standard deviation.

In & way, this simulation study confirms the robustness of the F-statistic for
the regression models in the grouped case and is likely to be very useful in

applications.
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2. Model and Notation

The notation used here is the same as in Indrayan and Rustagi (1979).
It is assumed that there are K populations, generated by random variables
yl,yz,...,yk. Further let yk be normally distributed with mean . and

k
2
variance o , where

e = ByXyq ¥ BpXyp *eoot BX

o (2.1)

k=1, 2,...,K

ﬁi's are the unknown parameters and x's are known constants, It is assumed

that there are n independent observations 1in yk, denoted as Yor W = 1,2,...,n

k
k
with & nk a n . The matrix of observations denoted by
k=1
X = (xid)
i=1,2,...,n,
J =1,2,...,p ,
is known.

Suppose the possible values of the random variables Yi are recorded in

410 ) s 1= ... 8, 21,0, 1, 2,... with €, - C; ) = h. Let

N,y be the number of observations on Y, in the interval [Ci—l’ Ci) and let

intervals [C

this probability be ﬂik'
Let C be a matrix of order m X p of known constants and let

Q; = (el,...,Bp). We are interested in the test of the hypothesis

Ho: gﬁ‘- a (2.2)

veraus the alternative
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for some given constant vector g,
In the usual ungrouped case, where K populations are tested for the
above hypothesis, the analysis of variance test utilizing the F-distribution

is generally available in most books, see for example, Rao (19731,

For the grouped data case, the likelihood of the sample L(m is obtained
in terms of multinomials.

Let the maximum likelihood estimates of "11{ under the null hypothesis
be denoted by ﬂik(:;) and under the full model by ﬁik(a). Maximum likelihood
estimates were discussed in an earlier paper by the authors (1979). The
likelihood ratioc given by

LTy (@)
LM, (8))

is used to provide tests for the hypotheses (2.2). The asymptotic distribution

(2.3)

of -2 log A follows chi-squared distribution as in the ungrouped case under

the approximation ignoring terms of 0(-‘15) .
a
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3. F-statistic

In the usual ungrouped case, the test of the general linear hypothesis
is obtained in terms of an F test. For the sake of completeness, we state

below the Fundamental Lemma of Analysis of Variance, Rao (1973).

Lemma 3.1. For the Gauss-Markov model (Y, X8, 02 I), the test of hypothesis

a = gwhere 2' i a given m X p matrix of rank m, is given by the statlstic

ng _ R02 . R02
F = Dl ——— (3.1)

where r = rank of matrix %vith

Ry = min (§4)" (KR »
B
and

2.

% = min (LX) (LX) -
-2,

The statistic (3.1) has an F-distribution with p and n-r degrees of freedom.
The teast of hypothesis in the grouped-data case can be similarly cbtain-
ed in terms of a statistic which is the ratio of sums of squares. Let the

mid point variable M be defined by the following:

M =m if and only if Y ¢ [Ci-l’ c,)

1=..,-2,-1,0,1, 2,...
The approximate maximum likelihood eatimate of 8 is given by

Bo = (LN LM (3-2)

L
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where A~ denctes the generalized inverse (g-inverse) of the matrix A,
for reference, See Rao and Mitra (1971) and M is the vector of mid points

N
resulting from the data. The mid point estimator 20 leads to a statistic

2 2 2
R--R° R
Poed__M_ 08 (3.3)
0 m n-r
where RO: = min (!A - w '(!A-m,) , and
R = min (M) (%) -

Ch=a
A8 usual, we evaluate the sums of squares in the statistic (3.3) by using

the following notation.

I X T
Suppose (~ "’) = ("'l Ie) ,
e KA
then
Row * Wil (3.)
Raie - Boy = (TR (L)

(3.5)
(TM)
To ensure estimability of Eﬁ, we assume that E‘ = Q')L for asome 15, with rank
of C = m,
~

Without loss of generality, the statistic F. can be considered fcr the

0
case of testing the hypothesis that % =0 In that case we have

Rai - m;:x (&-mﬁ(wm’)

- M-30,) ' (MK,
- N - BN
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2 2
M = li'li 8o that RlM

Errcr Sum of Squares (Error SS) and R]; - Rai as the Regression Sums of

2 2
and R - Rm = Q(') ;g_'u, Usually RCM is called the

Squares (Regression SS).

To show that the asymptotic distribution of

F o= {Regression SS)‘? + (Error SS)2 (3.6)
0 m ‘ n-m 3.

18 chi-squared to the order of approximation implied by Sheppard's cor-

rections, Cramér (197h, PP 359-362) which is assumed to be negligible here,

we have the following lemmas.

Lemma 3.2. The asymptotic distribution cf

A

Bo = (XN XM 3.7

[ d

as n < ® s p-variate normal with mean g, and variance covariance

2
(X'x)" (02 + 1-11?2-) to the order to the order of approximation implied by Sheppard's
correction.
Proof: Let i = \b&e
™

vhere M 1a n, -vector, k = 1,2,...,K. Suppose (X% X'=B = (B seresBy)

with §4 being a p X n, matrix, 1 = 1,2,...,Kk. With the above definitions,

i
K
=L M (3.8)
Ro=Z Ry
Let the elements of the partitions 24 of the matrix R be denoted by
Ean(i) , £=1,2,...,p,m= 1,2,...,n1 . Notice that the first n, columns
of ’.E,' are jdentical, the next n, columns are also identical and so on.

Therefore, the colums of the matrix E‘ are all identical for { = 1,2,...,K.

6
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' §4ﬂ4 for each i reduces to a constant multiple of the sume of ng )
1
elements of the vector ui‘ Since the components of this sum are indepen-

dent and identically distributed, by the application of Central Limit

Theorem, the vector §4§4 is asymptotically p-variate normal for each {.

The distribution of éo is consequently ¢28c p-variate normal.

2
\ 2  h
Since E(gi) = E(xij and variance of the components of W 18 0"+ 33 ‘
(subject to the approximation implied by Shappard's correction), it follows
that !
{
. N 1
= \
E(B,) =g, (3.9 1
and i
2
: A -1 ,2 h .
C°"(§o) = (xX)7 (¢" + 35 . (3.10) h
l The proof of lemma is now complete.
] Lemma 3.3. To the order of approximation implied by the Sheppard correction,
. the mean and variance of error sums of squares are given by
i
E(Error S8) = (n-plo- , (3.11)
i |
{ V(Error 8S) = 2(n-m)og +
(3.12)
] ( hh + 22_.)0)" b 2
Il »
L, 800 202 0 i i
vwhere .
l 2 2 W ’
O =0 * 33 (3.13)
l and 5
R= (b)) =L - XX0” % (3.14)
{
! ! !




Proof. Applying results of theorem 1 of Searle (1971, p. 55) and (3.10', we

have

E(Error SS) = nag + AL'KR - (mog + Q‘l'&) = (n-m)coe

In a paper by Hsu (1938), it has been shown that a quadratic form
Q=2= .Uzizj , with E(Q) = 1 and Var(Zi) = 02 for all i, has the following

1) i
properties: ;

2 L 2
var Q = ={u, .~3) A,, + 20 L Ia :
N by 11 11 13 .
L
where uy = B(Z, - E(Z))) .

Suppose now,

. Errnr SS
Q= %"
(n-p\oo

o Ibbtond

so that E(Q) = 1. Alsoc the matrix B is symmetric and idempotent with rank

n-m and hence Ir b

13
corrections, we have

ij = n-m. By assumptions of normality and using Sheppard's

§ chinsign

[N~

2 b
L b,n"2 n
BMy - BM))" - 307+ 5o 0 g5

for all i, The result (3.12) follows.

B S

From lemma 3.2, we know that the distribution of (Regression SS\/og
' asn ==, has a non-central chi-squared distribution with p degrees of freedom

with noncentrality parameter

6 - % (KR (3.15) ]

! to the order of approximation implied by Sheppard's corrections. Further
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since T bii < n-m, 1t follows from (3.11) and (3.12) that
i

(Error SS)/(n-m)og tends to 1 in probability. Hence mF, as given in (3.3

0]
has a noncentral chi-squared distribution with noncentrality parameter &,

Note that under the null hypothesis 8 = O, hence the asymptotic
distribution of Fo is central chi-squared. Therefore the test can be easily
performed.

For small h, the distribution of FO may turn cut to bte close to the F-
distribution. Box and Anderscn (1955) have developed robust tests for non-
normal populations using the following. Assume that the distribution of
{Errer SS)/(n-m\og is xi/v where degrees of freedom v are cbtained by a method

of moments given by

il :

2
v=nm-=5=% b11 + O(EH) (3.16)
o i o

=

For small h/c, we have hardly any correction to degrees of freedom and then
the test can be performed as an F test., This behavior of the statistic FO
has been studied through simulations and goodness of the apprcximation is

measured in terms of Kolmogoroff-Smirnov statistic in the next section.
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L, Simulations
Two models have been considered for simulations.

Model 1I. ~N(a + BX, > 02)

Tux
u = 1,2,...,nk; k =1,2,...,K.

V¢ consider X = 10, with X, = 0, X, = 1,...,X.. = 10, n, = 100 (same sample

1 2 10

sizes for every k), We consider two cases of a, B,

a = 10, B =0
a =40 and B = O.
2
The values of o are chosen to be

25 or 100.
The size of h is tiken as
0, 2, 3, 4, 5, 10, 15, 20.
The nypochesis cornsidered here is

HO: B =0

Using the usual I5M Rendom Number (enerator package, samples were generated

and then were grouped in imiervals of size h. The F statistic was calculated
for the ungrouped data case and FO statistic for the various grouped dats

cases. The empirical cumulative distribution of the statistics were then
computed and were compared with the theoretical F-distribution using Kolmogorov-

Smirnov distribution Tablie 1 and II describe the results of the simulations for

10
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n, = 10 and n = 100 respectively. The last column gives the tail probability
{ for significance in toth cases, The column with heading D gives the actual

value of Kolmogorov-Smirnov statistic.
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Table T

h \al v2 D p
g G2m25, 010 —-------=-------c--=-i--i-Cosos---o-

0 1 98 0.6120 0.8481

2 1 98 0.6311 0.8206

3 1 98 0.6988 0.8658

L 1 98 0.4953 0.9%69

5 1 98 0.8531 0.4606

10 1 98 1.1812 0.1227

15 1 98 0.8534 0. 4602

20 1 98 1.124) 0.1597
---------------------------- 0 =25, @m0 —cm e aeeea el

0 1 98 0.9169 0.3699

2 1 98 0.9339 0.3477

3 1 98 0.8668 0.4h01

L 1 98 0.6613 0.7743

5 1 98 0.7018 0.7082

10 1 98 0.9671 0.3070

15 1 98 0.8695 0.4362

20 1 98 1.2566 0.0850
---------------------------- 02=100, Q=10 —=memmmemmecm e e emoo

0 1 98 0.6721 0.7570

2 1 98 0.8685 0.4376

3 1 98 0.7632 0.6050

L 1 98 0. 5060 0. 9600

5 1 98 0.5713 0.8999

10 1 98 0.6226 0.8330

15 1l 98 0.780h 0.561k4

20 1 98 0.8204 0.5114
---------------------------- 02-:100, o

0 1 98 0.72ks 0.6701

2 1 98 0.7987 0. 5463

3 1 98 0.8099 0.5281

n 1 98 0.8101 0.5278

5 1 o8 0.7078 0.6982

10 1 98 0.8516 0.L629

15 1 98 0. %47 0.3098

20 1 98 0.6869 0.7330

12




Table IT
h vl v2 D P
--------------------------- 0 ™25, aml0 =-w-cecmmccccmccccccere—cmam—ca—————
0 1 998 0.8214 0.5097
2 1 998 0.9069 0.3832
3 1 998 0.8081 0.5310
L 1 998 0.7360 0.6507
5 1 998 0.8411 0.4790
10 1 998 0.k4s08 0.9871
15 1 998 0.9026 0.3891
20 1 998 0.7345 0.6532
--------------------------- 02=25, Y gy
0 1 998 0.5086 0.9562
2 1 998 0.7267 0.666k
3 1 998 0.6666 0.7659
A 1 998 0. 5544 0.9184
5 1 998 0.6424 0. 8037
10 1 998 0.5871 0.8809
15 1 998 0. 7458 0.63k2
20 1 998 1,1031 0.1753
mememmnassecmcccceen————— 52-100, 0ml0 -=-ececmcmeccccmemcecmcmcmnmcm—————
0 1 998 0.7605 0.609
2 1 998 0.7578 0.61L40
3 1 998 0.7627 0.6058
n 1 998 0.9348 0.3466
5 1 998 0. 8685 0.4376
10 1 998 0.6699 0.7606
15 1 998 0.6582 0.77
20 1 998 0. 9366 0.3k42
--------------------------- 072100, Rl w o e
0 1 998 0.7652 0.6017
2 1 998 0.7107 0.6934
3 1 998 0.7613 0.6082
N 1 998 0.7483 0.6300
5 1 998 0.5413 0.9313
10 1 998 0.5608 0.9015
15 1 998 0.8149 0.5201
20 1 999 0.5546 0.9182
13
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Model II. We consider here the regression model

2
Tk “NB Xy + BXp + BKyqy o)
K = 1,2,...,4.

Four sets of xku are utilized

(1) X,y =0 X, =1 X.. =3

11 12 13
(11) X, =2 Xy, = b Xpq = 6
(111) Xy =7 Xjp =5  Hgy =3
(1v) Xy, =9 xu2 =1 xh:‘3 =8
h = 0, 10, 50, 100, 200
o = 100
n, = 10, 25, 100 (same for all k)

Bl =B, = 53 =0,

The hypothesis tested here is

The results are given in Table III and are based on 100 samples,

14
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Table III

vl v2 D P

nk a 10 for all K ~---nccemmrccccccccccce e

2 37 0.7567 0.6158
2 37 0.698L 0.7138
1 37 0,7600 0.6104
2 37 0.7239 0.6712
2 37 1.28Ls 0.0738

n, = 25 for 8ll k —----ccmmmmmmcm s

2 ar 0.8039 0.5378
2 g7 0.8742 0.L2g4
2 g7 0.8401 0.4805
2 a7 0.7487 0.6293
2 a7 0.9388 0.3415

nk = 100 for all kK -------cmmmemmmemee e
2 397 0.7705 0.59%7
2 397 0.7468 0.6325
2 397 0.87L49 0.4284
2 397 1.1426 0.1k69
2 397 1.1312 0.1546

15
i
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5. Discussion

Comparison of the tall probability of the Kolmogorov-Smirnov statistic
for h = 0 (that is, ungrouped case) with various values of h, shows that on the
whole, the empirical cumulative distributions are the same for the cases
h/o < 1. Vhen % > 1, we do not have very good reaults., In general, one could
make the statement that the F-distribution is fairly a good approximation to
the distribution of the statistic Fo. More extensive simulations may be able

to provide further evidence of this correspondence.
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